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The endogenous cannabinoid signalling system, composed of endogenous cannabinoids, cannabinoid receptors and the
enzymes that synthesize and degrade the endogenous cannabinoids, is much more complex than initially conceptualized.
2-Arachidonoylglycerol (2-AG) is the most abundant endocannabinoid and plays a major role in CNS development and
synaptic plasticity. Over the past decade, many key players in 2-AG synthesis and degradation have been identified and
characterized. Most 2-AG is synthesized from membrane phospholipids via sequential activation of a phospholipase Cβ and a
diacylglycerol lipase, although other pathways may contribute in specialized settings. 2-AG breakdown is more complicated
with at least eight different enzymes participating. These enzymes can either degrade 2-AG into its components, arachidonic
acid and glycerol, or transform 2-AG into highly bioactive signal molecules. The implications of the precise temporal and
spatial control of the expression and function of these pleiotropic metabolizing enzymes have only recently come to be
appreciated. In this review, we will focus on the primary organization of the synthetic and degradative pathways of 2-AG and
then discuss more recent findings and their implications, with an eye towards the biological and therapeutic implications of
manipulating 2-AG synthesis and metabolism.
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Abbreviations
2-AG, 2-arachidonoylglycerol; AA, arachidonic acid; ABHD6, serine hydrolase α-β-hydrolase domain 6; ABHD12, serine
hydrolase α-β-hydrolase domain 12; AEA, anandamide; CaMKII, calcium calmodulin kinase II; DAGL, diacylglycerol
lipase; DSE, depolarization-induced suppression of excitation; DSI, depolarization-induced suppression of inhibition;
FAAH, fatty acid amide hydrolase; LPA, lysophosphatidic acid; LTD, long-term depression; lyso-PLC, lyso phospholipase
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Introduction
Humans have used Cannabis sativa for at least 8000 years for
recreational and therapeutic purposes (Zuardi et al., 2006). Its
chief psychoactive component is Δ9-tetrahydrocannabinol
(THC), which was chemically characterized in 1965
(Mechoulam and Gaoni, 1965). THC engages several recep-
tors, including the cannabinoid CB1 and CB2 receptors (recep-
tor nomenclature follows Alexander et al., 2013) These
receptors are a part of the endogenous cannabinoid (endo-
cannabinoid) signalling system, which regulates analgesia,

memory, synaptic plasticity, learning, appetite, peripheral
metabolism, immune function and many other physiological
processes (Hohmann et al., 1995; Di Marzo et al., 1998;
Cravatt et al., 2001; Brenowitz and Regehr, 2005; Kishimoto
and Kano, 2006). Thus, understanding endocannabinoid sig-
nalling is pivotal to understanding the complex networks
regulating these diverse processes.

The gene for the first cannabinoid receptor, CB1, was
cloned in 1990 (Matsuda et al., 1990). This receptor is found
throughout the nervous system (Herkenham et al., 1990) and
is also present in certain cells of the immune system, adipose
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tissue, liver, muscle, reproductive cells, kidney and lungs
(Pagotto et al., 2006). CB1 receptors belong to the GPCR
family (Mukhopadhyay and Howlett, 2001), are involved in
regulating many neuronal networks (Kano et al., 2009) and
are the most highly expressed GPCRs in the brain (Devane
et al., 1988; Herkenham et al., 1990).

The gene for the second cannabinoid receptor, CB2, was
cloned in 1993. These receptors have 44% amino acid homol-
ogy to the CB1 receptor (Munro et al., 1993) and are most
abundant in immune cells and their descendants (Galiegue
et al., 1995). However, the extent of CB2 receptor expression is
unclear and the precise distribution of CB2 receptors, espe-
cially in the nervous system, is still debated (Atwood et al.,
2012).

The endocannabinoids are the signalling components of
the endocannabinoid system. Although peptides that interact
with CB1 receptors (the pepcans; Bauer et al., 2012), including
the peptide hemopressin (Heimann et al., 2007), have been
described, the focus of this review will be on the synthesis
and degradation of lipid endocannabinoids, particularly
2-arachidonoylglycerol (2-AG). The endocannabinoids bind
to CB receptors, but vary in their affinity, efficacy and
metabolism. The two most studied endocannabinoids are
N-arachidonoyl ethanolamine, also known as anandamide
(AEA), and 2-AG. Lipid endocannabinoids are membrane-
preferring; they can diffuse across membranes but do not
participate in vesicle-mediated release. As a consequence,
endocannabinoids are thought to be synthesized enzymically
‘on demand’ from lipid precursors (Di Marzo et al., 1998).
However, some evidence suggests that in certain cases, 2-AG
might be preformed and sequestered until needed (Alger and
Kim, 2011). This possibility is based on the observation that
inhibitors of the main synthetic enzyme for 2-AG are some-
times unable to block 2-AG-dependent responses (Chevaleyre
and Castillo, 2003). However, a recent paper challenges the
notion of preformed 2-AG pools, making the argument that
experimental conditions may explain the discrepancies
(Hashimotodani et al., 2013).

2-AG has been implicated in a wide variety of physiologi-
cal processes, including several forms of neuroplasticity
(Kano et al., 2009). In addition to its signalling roles, 2-AG is
also an important intermediate in lipid metabolism (Ahn
et al., 2008). Thus, measurement of 2-AG from tissue samples
represents both ‘signalling’ and ‘metabolic-intermediate’
levels of 2-AG and it is likely that only a small fraction of the
2-AG measured in tissue samples is functioning as an endo-
cannabinoid (Caille et al., 2007). The synthesis of 2-AG
appears to occur through relatively few pathways, but its
degradation is more complex. The best studied synthetic
pathways for 2-AG are its synthesis from diacylglycerols
(DAG) with arachidonic acid at the 2-position (Stella et al.,
1997) by one of two diacylglycerol lipases (DAGL) – DAGLα
and DAGLβ (Bisogno et al., 2003). In addition, 2-AG can also
be synthesized by dephosphorylation of arachidonoyl-LPA
(Nakane et al., 2002) or by the sequential action of PLA1 and
a lyso phospholipase C (lyso-PLC) (Higgs and Glomset, 1994).

The metabolism of 2-AG is more complicated in that
several enzymes, operating in different compartments
and contexts, are involved. Enzymes metabolising 2-AG
are located both post-synaptically and pre-synaptically
(Blankman et al., 2007; Kano et al., 2009; Straiker et al., 2011).

This provides several parallel mechanisms for spatial control
of endocannabinoid signalling. Additional spatial specificity
may be imparted by the subcellular localization of the
enzymes as GPCR signalling is often restricted to certain
organelles (Caille et al., 2007). Monoacylglycerol lipase
(MAGL) is considered to be the chief 2-AG degrading enzyme,
but at least three other serine hydrolases also contribute: fatty
acid amide hydrolase (FAAH), serine hydrolase α-β-hydrolase
domain 6 (ABHD6) and serine hydrolase α-β-hydrolase
domain (ABHD12) (Blankman et al., 2007). All of these path-
ways lead to two major 2-AG breakdown products: arachi-
donic acid (AA) and glycerol (Freund et al., 2003). Additional
routes of 2-AG metabolism produce new signalling mol-
ecules. For example, COX-2 oxidizes 2-AG under certain cir-
cumstances (Straiker et al., 2011), producing prostaglandin
glycerol esters (Sang et al., 2007; Hu et al., 2008; Richie-
Jannetta et al., 2010). Phosphorylation of 2-AG by acyl glyc-
erol kinase(s) creates lysophosphatidic acid (LPA) (Bektas
et al., 2005), which activates different signalling pathways
(Moolenaar et al., 1997). Finally, lipoxygenases can oxidize
2-AG, producing hydroperoxy derivatives of 2-AG (Kozak and
Marnett, 2002). The bioactive role of these latter 2-AG
metabolites is often opposite to that of 2-AG (e.g. excitatory
rather than inhibitory). Therefore, inhibiting the metabolic
enzymes can have profound cellular consequences. The com-
plexity of 2-AG regulatory mechanisms (Figure 1) is consid-
erable and deserves a closer examination. This review
summarizes recent major discoveries in the areas of 2-AG
synthesis and metabolism in the CNS.

Three major pathways for
2-AG synthesis

Three major pathways have been proposed for 2-AG synthesis
(Figure 2). The first is the production of 2-AG via a two-step
process, starting with phosphatidylinositol 4,5-bisphosphate
(PIP2) proceeding via a DAG intermediate to 2-AG (Farooqui
et al., 1989). The first step is catalysed by a phospholipase
C-β (PLCβ) (Farooqui et al., 1989), whereas the second step
is catalysed by one of two DAGLs (Bisogno et al., 2003;
Tanimura et al., 2010). This pathway appears to dominate in
the CNS (Kano et al., 2009). The second pathway involves the
conversion of phosphatidyl lipid (e.g. PI) to 2-arachidonoyl-
lyso PI, by the action of a PLA1, and then to 2-AG by the
action of lyso-PLC (Higgs and Glomset, 1994) (Figure 2). The
third pathway involves LPA hydrolysis by an LPA phos-
phatase (Nakane et al., 2002). The involvement of these latter
two pathways in the production of 2-AG in the CNS has not
been evaluated in detail but may account for some reports of
endocannabinoid-mediated synaptic plasticity that is insen-
sitive to DAGL inhibitors (Zhang et al., 2011).

Two DAGL isoforms produce 2-AG

Two DAGL isoforms have been identified – DAGLα and
DAGLβ (Bisogno et al., 2003). DAGLs are highly conserved
between species, with human and mouse DAGLα sharing
97% homology and the DAGLβs sharing 79% homology. The
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Figure 1
2-AG trafficking and its action at the synapse. (A) 2-AG synthesis and breakdown. Schematic representation of an excitatory terminal and
post-synaptic spine. Conventional action potential-induced neurotransmitter release (e.g. glutamate) occurs via activation of calcium channels
adjacent to transmitter-filled vesicles, which fuse with the membrane to release their contents. 2-AG can be produced either following synaptic
depolarization (e.g. DSE) or by activation of Gq/11-coupled GPCRs, such as group I mGlu receptors, which then activate PLCβ (PLCβ, cleaving
phosphatidyl bisphosphate (PIP2) into DAG and inositol trisphosphate (IP3). DAG is hydrolysed by DAG lipase, yielding 2-AG. Rather than being
released from vesicles, lipophilic endocannabinoids cross the membrane, perhaps utilizing facilitated transport. The mechanism of subsequent
passage across the synapse is unknown but may involve carrier proteins. Activation of pre-synaptic CB1 receptors inhibits transmitter release by
inhibiting Ca2+ channels. On the post-synaptic side, 2-AG can be broken down into glycerol and AA by the enzyme ABHD6, embedded in the
membrane. On the pre-synaptic side, 2-AG can be broken down by MAGL, loosely associated with the plasma membrane, or, in principle, by
ABHD12, a transmembrane protein, into glycerol and AA. (B) ABHD12 localization on Golgi. Emerging evidence suggests that ABHD12 is
embedded in the Golgi membrane, with its active site facing the lumen.
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two enzymes differ from each other by the presence of a long
C-terminal tail (∼300 amino acids) in DAGLα relative to
DAGLβ (Oudin et al., 2011). The C-terminal tail in DAGLα
facilitates its regulation by calcium calmodulin kinase II
(CaMKII), which phosphorylates serine residues in this
region, decreasing DAGLα activity (Shonesy et al., 2013). In
mice expressing an activation-impaired form of CaMKII
(T268A), both DAGL activity and 2-AG production are
increased (Shonesy et al., 2013). Homer, an important post-
synaptic scaffolding protein (Szumlinski et al., 2006), appears
to be involved in targeting of DAGLα towards group I meta-
botropic glutamate receptors (mGluRs) in dendritic spines
(Jung et al., 2007; Oudin et al., 2011). Moreover, in murine
DAGLα, the amino acid residues 973–980 comprise a consen-
sus motif, PPxxF, for binding the coiled-coil domain of homer
proteins (Jung et al., 2007). Interestingly, homer 1a, which
lacks the ability to partner with other homers and disrupts
synaptic scaffolding, decreases group I mGluR-mediated syn-
aptic plasticity, while enhancing depolarization-induced sup-
pression of excitation (DSE) (Roloff et al., 2010), emphasizing
the importance of DAGL’s spatial localization in fine-tuning
synaptic plasticity.

Localization of DAGLα and DAGLβ
appears to be complementary
and tissue-specific

DAGLα mRNA is expressed throughout the brain, but most
notably in the hippocampus, striatum, ventral tegmental area
and cerebellum; DAGLβ’s expression pattern is not as well
characterized (Oudin et al., 2011). The highest levels of
DAGLα mRNA are found in hippocampal pyramidal cells,
dentate granule cells and cerebellar Purkinje cells. In contrast,
the highest levels of DAGLβ mRNA are present in the cerebel-
lar granular layer; with low levels in the hippocampal pyrami-
dal cell layer and thalamus (Yoshida et al., 2006). In adult
brain, DAGLα is generally found post-synaptically where it is
enriched in the plasma membrane of dendritic spines, par-
ticularly in the spine neck (Katona et al., 2006; Yoshida et al.,
2006; Jung et al., 2007; Ludanyi et al., 2011). Much less
is known about the subcellular distribution of DAGLβ,
although recent evidence suggests that it is more broadly
expressed in dendrites of cultured hippocampal neurons than
is DAGLα (Jain et al., 2013). At excitatory synapses, CB1 recep-
tors and DAGLα are found in close proximity – CB1 receptors
are pre-synaptic and DAGLα is post-synaptic (Katona et al.,
2006; Yoshida et al., 2006). This consistent spatial arrange-
ment of 2-AG synthesis and effector sites at excitatory syn-
apses appears to facilitate precise control of 2-AG release
towards CB1 receptors. Importantly, whereas CB1 receptors
and DAGLα are closely apposed at excitatory synapses, CB1

receptors at inhibitory synapses can be quite distant from
detectable DAGLα (Katona et al., 2006; Yoshida et al., 2006).

The distribution of DAGLα and DAGLβ changes markedly
during development. In developing mouse forebrain projec-
tion neurons, DAGLs are often co-expressed with CB1 recep-
tors in elongating axons (Bisogno et al., 2003; Mulder et al.,
2008; Keimpema et al., 2010; Wu et al., 2010). However, post-
natally CB1 receptors concentrate in axon terminals, whereas

the DAGLs accumulate in dendrites (Keimpema et al., 2011).
In summary, both DAGLα and DAGLβ are widely distributed.
Prenatally, both tend to be expressed in axons, whereas post-
natally they are found in dendrites and dendritic spines.

DAGLα and DAGLβ function

Studies using pharmacological inhibition of DAGLs implicate
these enzymes in 2-AG-mediated synaptic plasticity (Kano
et al., 2002; 2009). However, these inhibitors do not distin-
guish between DAGLα and DAGLβ, making it impossible to
determine which of the two DAGLs is involved in 2-AG
production. The development of three independent lines
each of DAGLα and DAGLβ knockout (KO) mice has helped
in this regard (Gao et al., 2010; Tanimura et al., 2010; Yoshida
et al., 2011). All reported essentially the same finding: the
absence of DAGLα eliminates every form of synaptic plastic-
ity examined. These results appeared to fully resolve the
question of which DAGL mediates synaptic plasticity in
favour of DAGLα, although it leaves unresolved the role of
the relatively abundant DAGLβ in neurons.

If a DAGL plays a major role in 2-AG synthesis, 2-AG
levels would be predicted to decline in the corresponding
DAGL KO mice. Indeed, Tanimura et al. (2010) found signifi-
cant decreases in 2-AG levels in both DAGLα−/− and
DAGLβ−/− mice. However, there were major differences
among tissues. For example, in the CNS of DAGLα−/− mice,
there is an 80% decrease in 2-AG levels and a 50% decrease in
2-AG levels in the CNS of DAGLβ−/− mice. However, in the
liver of DAGLβ−/− mice, there is an ∼90% reduction in 2-AG
levels and in the DAGLα−/− mice 2-AG is only reduced by
50% (Gao et al., 2010). This underscores the notion that
either enzyme may be important for 2-AG production in a
tissue-dependent fashion. For example, an ethanol-rich diet
up-regulates hepatic DAGLβ expression, leading to steatosis
(Jeong et al., 2008) and DAGLβ mediates certain pro-
inflammatory responses in peritoneal macrophages (Hsu
et al., 2012). Cerebral morphology was unaffected in either
DAGLα or DAGLβ KO mice (Tanimura et al., 2010). Function-
ally, however, adult neurogenesis in the dentate gyrus and
sub-ventricular zone was diminished in both DAGLα−/− and
DAGLα+/− mice, but lack of DAGLβ had no measurable effect
(Gao et al., 2010). Loss of one DAGL did not affect mRNA for
the other DAGL nor did it alter the levels of MAGL, FAAH,
CB1 or CB2 receptor mRNA (Gao et al., 2010).

Whereas these experiments strongly argue for an exclu-
sive role for DAGLα in endocannabinoid-mediated synaptic
plasticity, KO studies using constitutive deletions have limi-
tations insofar as developmental adaptations to the absence
of a protein may have long-term or secondary effects that are
difficult to predict. For example, in the brain, spinal cord and
liver of DAGLα−/− mice, AEA levels are decreased despite this
enzyme not having a direct role in AEA synthesis (Gao et al.,
2010).

A recent study using RNAi knockdown in cultured
hippocampal neurons suggests that DAGLα and DAGLβ
can cooperate to mediate two forms of endocannabinoid
plasticity: DSE and metabotropic suppression of excitation
(MSE) (Jain et al., 2013). In these experiments, DSE was
diminished by knockdown of either DAGL and reduced
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almost completely when both enzymes were knocked down,
consistent with a cooperative effect. Similarly, knockdown of
either DAGL decreased MSE mediated by mGluR5. This indi-
cates that at the very least, DAGLβ is capable of eliciting
endocannabinoid-mediated synaptic plasticity under some
conditions and that the two enzymes can share this function
in the same neuron. Hopefully, it will also motivate studies
using inducible DAGLα and DAGLβ KO mice to assess
more thoroughly the role of these two enzymes in 2-AG
production.

In summary, 2-AG production appears to occur chiefly via
the two DAGLs, but which isoform is actually responsible still
remains to be established. 2-AG function, the location of its
metabolic enzymes and CB1 receptors all undergo a pro-
nounced developmental change from a predominantly pre-
synaptic path-finding role in the developing CNS to a
primarily post-synaptic neuromodulatory role in the mature
CNS. DAGLα activity is highly regulated, including stimula-
tion by increases in intracellular calcium (Bisogno et al.,
2003) and increase in substrate (DAG) by activation of PLCβ,
and inhibition by CaMKII phosphorylation and disrupted
targeting by homer 1a (Jung et al., 2007; Kano et al., 2009;
Won et al., 2009; Roloff et al., 2010). Attempts to harness the
cannabinoid system for therapeutic purposes have focused on
synthetic receptor agonists and antagonists and, to a lesser
extent, inhibitors of enzymic breakdown. However, the
enzymes that produce and regulate the production of 2-AG
may offer alternative targets for particular indications.

When the job is (partially) done:
2-AG metabolism

Much evidence supports the notion that in the mature CNS,
2-AG frequently acts as a retrograde synaptic signal, produced
pre-synaptically and acting post-synaptically. As 2-AG trav-
erses the synaptic cleft and reaches the pre-synaptic terminal,
it enters into the membrane, where it can bind to the CB1

receptor. In the pre-synapse, 2-AG can diffuse beyond the CB1

receptor, possibly engaging other targets. Therefore, its
prompt metabolism is important to avoid unintended
actions. In addition, 2-AG also serves as an important inter-
mediate in lipid metabolism (Ho and Randall, 2007). Our
understanding of 2-AG metabolism has increased in recent
years in large part due to the development of specific inhibi-
tors and several lines of KO mice. This section will summarize
many of those findings and identify key questions that
remain regarding the details of 2-AG metabolism.

2-AG can be broken down or modified by a diverse assort-
ment of enzymes that either hydrolyse it into its component
parts (AA and glycerol) or chemically transform it by acylat-
ing or phosphorylating the glycerol or oxidizing its AA
moiety (Figure 2). Enzymes involved in hydrolysis include
MAGL, ABHD6, ABHD12 and FAAH (Blankman et al., 2007).
Enzymes involved in chemical transformation include
COX-2 (Kozak et al., 2000), cytochrome P450 (Chen et al.,
2008), lipoxygenases (Maccarrone et al., 2000), monoacylg-
lycerol (MAG) kinases (Kanoh et al., 1986) and MAG acyl
transferases (Coleman and Haynes, 1986).

When considering studies investigating the enzymes
involved in 2-AG degradation, it is important to distinguish

between results from in vitro experiments, which address the
question of whether a particular enzyme can metabolize
2-AG, and those from in vivo experiments that address the
question of whether the enzyme has physiological relevance in
a particular context. It is well accepted that MAGL is the
dominant enzyme in degrading 2-AG in its endocannabinoid
retrograde messenger role, but at least four other enzymes –
ABHD6, ABHD12, FAAH and COX-2 – have important, but
more specialized roles in endocannabinoid retrograde signal-
ling. Studies examining 2-AG metabolism raise intriguing
questions that we will address below: Which of these
enzymes are active members of an endogenous 2-AG-based
cannabinoid signalling system? Where are they found and
when do they contribute? Do they act cooperatively or in a
division of roles? For example, does one enzyme engage in
bulk clearance of 2-AG at the pre-synaptic terminal while
another breaks down the neurotransmitter on the post-
synaptic side? Does their activity level or function depend on
the cell type that they are expressed in?

MAGL is responsible for acute
breakdown of 2-AG, and more . . .

MAGL is primarily pre-synaptically localized (Gulyas et al.,
2004). It contains 302 amino acids, with its catalytic triad,
Ser122, Asp239 and His269 located in turns between α-helices and
β-sheets (Karlsson et al., 1997). In addition, MAGL contains
an HG-dipeptide (His49 and Gly50) motif common to all
lipases (Karlsson et al., 2001). Moreover, three cysteine resi-
dues, Cys242 (King et al., 2009), Cys201 and Cys208 (Jaeger et al.,
1999), regulate MAGL function, as their mutation decreases
hydrolytic activity. In addition, molecular and Western blot-
ting evidence supports the existence of several MAGL splice
variants (Karlsson et al., 2001). MAGL is localized intracellu-
larly and is found in both soluble and membrane fractions
(Blankman et al., 2007). It is pre-synaptic and a loosely
membrane-associated location is ideal to break down 2-AG in
the proximity of CB1 receptors. Our understanding of the
prominent role of MAGL in degrading 2-AG in the CNS
comes from the observation that inhibiting or knocking out
MAGL leads to large increases in brain 2-AG levels. For
example, in MAGL−/− mice, 2-AG levels increase 58-fold
(Taschler et al., 2011). The quantitatively dominant role of
MAGL among other serine hydrolases in hydrolysing 2-AG
comes from an experiment where 32 serine hydrolases
expressed in the brain were tested for their ability to hydro-
lyse 2-AG. The great majority of 2-AG was hydrolysed by
MAGL (Blankman et al., 2007). Evidence for a role of MAGL
in terminating the action of retrogradely released 2-AG comes
from experiments where endocannabinoid (2-AG)-mediated
synaptic plasticity is prolonged in slices or cultured neurons
prepared from MAGL KO animals (Kano et al., 2009; Straiker
and Mackie, 2009).

Complete pharmacological or genetic inactivation of
MAGL increases endocannabinoid tone and causes CB1

receptor desensitization, tolerance to CB1 receptor agonists
and down-regulation of CB1 receptors (Chanda et al., 2010;
Schlosburg et al., 2010). These findings emphasize the
importance of MAGL as an enzyme playing a major role in
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hydrolysing synaptic 2-AG. An important practical question
is how much MAGL inhibition is necessary for CB1 receptor
desensitization and is there a therapeutic window where
pharmacologically useful MAGL inhibition occurs, without
desensitization of CB1 receptor signalling?

2-AG hydrolytic activity in brain membranes from MAGL
mice lacking just one allele (MAGL+/−) was about half of that
of wild-type mice (Schlosburg et al., 2010). 2-AG levels in
these animals were also significantly elevated (about twice
over wild-type levels) (Schlosburg et al., 2010). The twofold
increase in 2-AG levels did not significantly desensitize CB1

receptors (Schlosburg et al., 2010). This suggests that MAGL
activity can be significantly reduced and 2-AG levels mildly
elevated, before CB1 receptor desensitization occurs. A
number of investigators have studied the effects of chronic
MAGL inhibition by JZL184 in mice (Busquets-Garcia et al.,
2011; Kinsey et al., 2011; Sumislawski et al., 2011; Ghosh
et al., 2013). These studies suggest that chronic (typically
∼1 week) parenteral dosing of up to and including
8 mg·kg−1·day−1 of JZL184 does not lead to behavioural toler-
ance or CB1 receptor desensitization (Busquets-Garcia et al.,
2011; Kinsey et al., 2011; Ghosh et al., 2013). However, a
chronic JZL184 dose of 16 mg·kg−1·day−1 reliably produces
tolerance (Sumislawski et al., 2011; Ghosh et al., 2013).
Whereas there may be variation between tissues and behav-
iours, there appears to be a therapeutic window (between 8
and 16 mg·kg−1 of JZL184) of MAGL inhibition, where
behavioural efficacy is intact and CB1 receptor signalling is
maintained.

Interestingly, in both MAGL KO mice and animals treated
with a MAGL inhibitor, in addition to the expected increase
in 2-AG brain levels, there was a profound decrease in levels
of free AA (Long et al., 2009). It is likely that inhibition of
2-AG degradation via MAGL attenuates AA-based lipid
production. Consistent with this idea, several eicosanoids,
including PGE2, PGD2, PGF2α and thromboxane B2, were
decreased (Nomura et al., 2011). Interestingly, MAGL inhibi-
tors prevented the rise in brain eicosanoids and inflammatory
cytokines seen following LPS injection, without affecting
basal cytokine levels. Moreover, the reduction in activated
cytokines was not reversed by CB1 receptor antagonists, but
was mimicked by COX-1 blockade (Nomura et al., 2011),
suggesting they were due to COX-1 metabolites and not CB1

receptor activation. These findings suggest that MAGL inhi-
bition may be an effective therapeutic option for neuroin-
flammatory conditions. Thus, MAGL is an important enzyme
both in regulating synaptic 2-AG-based signalling as well as
in controlling brain eicosanoid production.

ABHD6: a post-synaptic guard against
2-AG overproduction?

ABHD6 first drew attention as a 2-AG metabolizing enzyme
when it was found to account for a portion (∼5%) of esti-
mated 2-AG hydrolase activity in mouse brain (Blankman
et al., 2007). ABHD6 is an integral membrane protein with its
active site facing the interior of the cell (Blankman et al.,
2007). Homology modelling suggests that the first nine
residues are extracellular, followed by 30 transmembrane

residues and 290 intracellular residues (Bowman and
Makriyannis, 2013). In humans, ABHD6 mRNA is found
throughout the body, including the brain, the liver, the
kidney and the ovary (Li et al., 2009). Prefrontal cortex has
high levels of ABHD6, where it is often expressed post-
synaptically on the cell membrane of dendritic spines,
apposed to immunoreactive CB1 receptors (Marrs et al., 2010).
ABHD6 was also expressed post-synaptically in cultured hip-
pocampal neurons and glia (Straiker et al., 2009; Marrs et al.,
2010). Quantitative immunogold labelling found that more
than 90% of ABHD6 immunoreactivity in mouse prefrontal
cortex was post-synaptic, often in dendritic spines (Marrs
et al., 2010). In mouse retina, ABHD6 immunostaining was
present in the inner plexiform layer, the inner nuclear layer
and the ganglion cell layer. This staining also appeared to
be concentrated in calbindin-positive and GAD67-positive
amacrine cells, and also co-localized with a dendritic marker
(Hu et al., 2010). Thus, ABHD6 has a relatively widespread
distribution, primarily as a post-synaptic protein, contrasting
with the pre-synaptic localization of MAGL.

A functional role for ABDH6 in 2-AG hydrolysis is appar-
ent in BV-2 cells (a microglial cell line), which lack MAGL, yet
efficiently hydrolyse 2-AG (Muccioli et al., 2007). In these
cells, ABHD6 was found to be a significant 2-AG metabolizing
enzyme, responsible for about half of 2-AG hydrolysis (Marrs
et al., 2010). Additionally, roles for ABHD6 in 2-AG hydrolysis
have been reported in lysates of cultured cortical cells and
intact cultured cortical neurons (Marrs et al., 2011).

Inhibition of ABHD6 or MAGL in prefrontal cortical slices
enabled a subthreshold long-term depression (LTD) stimulus
to produce LTD via a CB1 receptor-dependent mechanism.
However, the effects of ABHD6 and MAGL inhibition were
not additive – blocking both ABHD6 and MAGL did not
further increase LTD. Because its active site is predicted to be
intracellular, it has been proposed that ABHD6 limits intrac-
ellular 2-AG accumulation (Marrs et al., 2010). Interestingly,
even though cultured autaptic hippocampal neurons
expressed immunoreactive ABHD6, neither ABHD6 inhibi-
tion nor its overexpression affected DSE in these neurons
(Straiker et al., 2009). Similarly, ABHD6 inhibition did not
alter the time course of depolarization-induced suppression
of inhibition (DSI) in cortical slices (Marrs et al., 2010).
Its dendritic localization and more limited effects on
endocannabinoid-mediated synaptic plasticity may indicate
that ABHD6 is most relevant during prolonged 2-AG release
(e.g. during an LTD stimulus) or when excessive 2-AG levels
are reached.

ABHD12: role in an inherited
neurological disorder and a specialized
means of 2-AG degradation

ABHD12 accounted for about 9% of estimated 2-AG serine
hydrolase activity in the mouse brain (Blankman et al., 2007).
ABHD12 is predicted to be an integral membrane protein
with its active site facing the lumen/extracellular space
(Blankman et al., 2007). In cultured hippocampal neurons,
ABHD12 immunoreactivity co-localizes with the Golgi
apparatus as detected by the lectin, GS-II (Straiker et al.,
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2013). Moreover, in contrast with other 2-AG hydrolysing
enzymes, ABHD12 has been linked to a neurodegenerative
disease in humans characterized by polyneuropathy, hearing
loss, ataxia, retinitis pigmentosa and cataracts (PHARC;
Fiskerstrand et al., 2010). This disorder is due to loss-of-
function mutations of the ABHD12 gene. ABHD12 KO mice
have recently been generated (Blankman et al., 2013) and
these mice appear normal at a young age, but go on to
develop a number of pathologies later in life that resemble
PHARC. However, the available evidence suggests that 2-AG
hydrolysis by ABHD12 is unrelated to the deficits noted in
ABHD12 KO mice. The evidence for this is that 2-AG levels
were not significantly altered in these KO mice and 2-AG
hydrolysis activity in brain protein homogenates of ABHD12
KO and wild-type mice were comparable. However, pretreat-
ment of the brain protein homogenates with the selective
MAGL inhibitor, JZL184 (1 μM), reduced 2-AG hydrolase
activity in ABHD12 KO animal homogenates significantly
more than in wild-type brain homogenates (Blankman et al.,
2013). One interpretation of these data is that ABDH12 is an
accessory enzyme that is recruited only when particularly
high amounts of 2-AG are present or MAGL is unavailable. In
young ABHD12 KO mice, very long chain lysophosphatidyl-
serine (lysoPS) lipids were significantly elevated, prior to the
onset of neuroinflammatory and behavioural defects. This
correlated with an increase in activated microglia in cerebel-
lar sections of asymptomatic ABHD12 KO mice (Blankman
et al., 2013). These data suggest that ABHD12 metabolizes
very long chain lysoPS lipids, but has little effect on basal
2-AG levels, at least at the global level. Consistent with these
observations, overexpression of ABHD12 in autaptic hip-
pocampal neurons did not shorten the duration of DSE, sug-
gesting that in this system, ABHD12 does not contribute to
degrading 2-AG in its role as a retrograde messenger (Straiker
et al., 2011). However, knockout of ABHD12 did slightly
attenuate EPSC inhibition after the longest depolarization,
which corresponded to the largest 2-AG release, suggesting
that in the case of 2-AG overproduction, ABHD12 might be
involved in its breakdown. Moreover, with increasing time in
culture, desensitization of CB1 receptors in ABHD12 KO
neurons occurred, supporting a role of ABHD12 in 2-AG
clearance under certain conditions (Straiker et al., 2013).

COX-2 oxygenates 2-AG to produce
pro-inflammatory prostaglandin
glycerol esters

COX-2 is a prostaglandin-endoperoxide synthase that is
essential in the synthesis of prostaglandins from free AA (Xie
et al., 1991) but it also metabolizes 2-AG (Kozak et al., 2000)
to prostaglandin E2–glycerol ester (PGE2-G). COX-2 expres-
sion is induced by various inflammatory and other injurious
stimuli and is a major producer of prostaglandins during an
inflammatory response (Masferrer et al., 1994). PGE2-G is a
multifunctional signalling molecule whose effects include
immune system modulation, hyperalgesia and enhanced
neuronal activity (Sang and Chen, 2006; Sang et al., 2006; Hu
et al., 2008). COX-2 inhibition was also shown to prolong DSI
in hippocampal slices (Kim and Alger, 2004), suggesting that

it is involved in limiting the retrograde signalling actions of
2-AG. A subsequent study in cultured hippocampal neurons
identified a subpopulation of inhibitory interneurons in
which the duration of DSI was determined by both MAGL
and COX-2 (Straiker and Mackie, 2009). These results suggest
that in some inhibitory neurons, COX-2 and MAGL coopera-
tively determine the duration of DSI, whereas in other inhibi-
tory neurons, MAGL may be the dominant 2-AG degrading
enzyme.

CNS insults such as ischaemia, trauma and seizures all
lead to COX-2 induction (Lapchak et al., 2001; Takemiya
et al., 2003). Interestingly, in cultured autaptic hippocampal
neurons, overexpression of COX-2 with endogenous MAGL
shortened the duration of DSE by almost a half (Straiker et al.,
2011). Additionally, because 2-AG production during CNS
insults can be neuroprotective (Sinor et al., 2000; Panikashvili
et al., 2001), induction of COX-2 may enhance neurotoxicity,
both by decreasing 2-AG levels and by transforming 2-AG
into the excitatory neuromodulator PGE2-G. Taken together,
these data demonstrate that COX-2 can profoundly influence
2-AG signalling.

Interestingly, the products of 2-AG metabolism by COX-2
generally oppose CB1 receptor-mediated 2-AG functions.
COX-2 oxygenation of 2-AG has been implicated in
glutamate-induced excitotoxicity (Sang et al., 2006), through
PGE2-G activation of caspase 3, ERK, p38 mitogen-activated
protein kinase, IP3 and NF-κB signalling (Sang et al., 2007).
Taken together, the data suggest that antagonism of the
PGE2-G receptor or novel inhibitors of COX-2-mediated
PGE2-G formation could be used to treat neurodegenerative
and inflammatory diseases. Recent studies demonstrate that
it is possible to develop COX inhibitors that preferentially
inhibit oxygenation of 2-AG (Duggan et al., 2011). For
example, lumiracoxib inhibited COX-2 oxygenation of 2-AG,
without affecting oxygenation of AA whereas celecoxib
inhibited AA oxygenation more effectively than that of 2-AG
(Duggan et al., 2011). This selective inhibition of 2-AG oxy-
genation appears to be therapeutically beneficial, as it was
efficacious in a mouse model of anxiety (Hermanson et al.,
2013) and would avoid the effects of impaired prostaglandin
formation.

While less well studied, a number of lipoxygenases can
metabolize 2-AG, producing hydroperoxy derivatives of
2-AG (Kozak and Marnett, 2002). In COS-7 cells, arachi-
donate 12-lipoxygenase was shown to convert 2-AG into
the 2-glyceryl ester of 12(S)-hydroperoxyeicosa-5,8,10,14-
tetraenoic acid (Moody et al., 2001). However, these mecha-
nisms remain to be studied in detail or in vivo, especially with
regard to their significance in the CNS.

FAAH – another enzyme that can
break down 2-AG?

FAAH is a dimeric integral membrane protein. Although it is
found throughout the body, it is most active in the brain and
liver. In brain homogenates, hippocampus and cortex appear
to have the highest FAAH activity (Thomas et al., 1997). The
enzyme degrades a variety of fatty acid amides, including AEA
(Cravatt et al., 1996). This broad substrate specificity must be
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considered when interpreting the results of experiments
using FAAH inhibition. In the brain, FAAH immunoreactivity
is primarily neuronal and is enriched in somata and dendrites
(Egertova et al., 2003), where it is primarily found to be asso-
ciated with the cytoplasmic face of smooth ER, mitochondria
and, less frequently, the cell membrane (Gulyas et al., 2004).
Similarly, in cultured hippocampal neurons, FAAH staining
was exclusive to neurons and was primarily present in somata
and proximal dendrites (Straiker et al., 2011). This staining
pattern was in concordance with FAAH lacking rapid effects
on synaptic transmission, as the FAAH blocker URB597 did
not affect the time course of DSE (Straiker et al., 2011). FAAH
can hydrolyse 2-AG in vitro, although the consequences of
this in vivo appear limited (Goparaju et al., 1998). For
example, FAAH knockout and FAAH inhibitors generally do
not alter 2-AG levels (Lichtman et al., 2002; Kathuria et al.,
2003; Schlosburg et al., 2010). Moreover, FAAH knockout did
not desensitize CB1 receptors (Straiker and Mackie, 2005), in
contrast to MAGL knockout, which caused profound CB1

receptor desensitization (Marrs et al., 2010; Schlosburg et al.,
2010). However, in autaptic hippocampal cultures, overex-
pression of FAAH with endogenous MAGL did shorten the
duration of DSE (Straiker et al., 2011). In summary, FAAH
does not appear to play a role in degrading synaptically
released 2-AG in the systems (short-term synaptic plasticity)
discussed above; however, if FAAH expression is strongly
up-regulated, it may participate.

2-AG phosphorylation and acylation as
clearance mechanisms

Lipid kinases with activity against MAG can phosphorylate
2-AG to generate 2-arachidonoyl-LPA (2A-LPA) (Nakane et al.,
2002), which is an agonist for LPA receptors (LPA1-LPA6) (Choi
et al., 2010), and an important signalling molecule in its own
right. This modification will decrease 2-AG, attenuating CB1-
receptor-mediated effects, but it will also have the conse-
quence of increasing LPA-mediated signalling. 2A-LPA can
also be converted back to 2-AG by lipid phosphatase(s)
(Nakane et al., 2002), which provides an alternative route for
2-AG synthesis. One LPA kinase is the multi-substrate lipid
kinase (Waggoner et al., 2004), also called acylglycerol kinase
(Bektas et al., 2005). Whereas acylation of MAG to a DAG is a
theoretical pathway for decreasing 2-AG bioavailabilty,
neither of the two cloned monoacylglycerol acyltransferases,
MGAT1 (Yen et al., 2002) or MGAT2 (Cao et al., 2003), are
expressed at detectable levels in the CNS. The 2-AG/2A-
LPA/LPA cycle demonstrates that inter-conversion of
neuromodulators may be an economical means for a cell to
simultaneously regulate two signalling systems – by remov-
ing an effector from one signalling system and in the process
converting it into an effector for another signalling system.

Why do neurons have so many
‘options’ for degrading 2-AG?

The diversity of enzymes involved in terminating 2-AG sig-
nalling allows fine-tuning of this pathway, both spatially and

state-dependently (e.g. following ischemia). In the simplest
view, 2-AG is synthesized in the post-synaptic cell. If large
amounts of 2-AG are produced, it may be post-synaptically
degraded by ABHD6 into AA and glycerol. The remaining
2-AG diffuses across the synapse, interacting with CB1 recep-
tors on the pre-synaptic terminal. Pre-synaptically, 2-AG can
be degraded by MAGL, COX-2 or ABHD12. A summary of this
arrangement is depicted schematically in Figure 1. Depend-
ing on the amount of 2-AG produced, and the enzymes
involved, the duration and spatial spread of 2-AG can be
controlled and additional modulators (e.g. PGE2-G and
2A-LPA) produced.

The last decade has seen many exciting advances in the
cannabinoid field. One of them is that 2-AG has emerged as
the chief endocannabinoid neuromodulator. Moreover, the
field as a whole has moved from brute force manoeuvres to
either activate or suppress cannabinoid receptors to more
subtle ways of fine-tuning their signalling. One way to
achieve this goal is by manipulating 2-AG production or
degradation. The various enzymes synthesizing or degrading
2-AG appear to be rich targets for pharmacological manipu-
lation in a variety of disease states. This is not only due to
their manipulation affecting 2-AG levels but also because the
metabolic products of 2-AG can themselves have significant
biological activity.
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